
Preservice Teacher Education 

Galindo, E., & Newton, J., (Eds.). (2017). Proceedings of the 39th annual meeting of the North American Chapter 
of the International Group for the Psychology of Mathematics Education. Indianapolis, IN: Hoosier 
Association of Mathematics Teacher Educators. 

797 

EVALUATING PROOFS AND CONJECTURES CONSTRUCTED BY PRE-SERVICE 
MATHEMATICS TEACHERS  

Zulfiye Zeybek 
Gaziosmanpasa University 
zulfiye.zeybek@gop.edu.tr 

This study focused on investigating the ability of 58 pre-service mathematics teachers’ (PSMTs) to 
construct-evaluate mathematical conjectures-proofs in a mathematics course. The combined 
construction-evaluation activity of conjectures-and-proofs helps illuminate pre-service mathematics 
teachers’ understanding of proof. The result of the study demonstrated that the number of instances 
where the PSMTs constructed conjectures were less than the number of instances where they 
constructed arguments to prove/disprove assertions during the semester. Additionally, the PSMTs 
usually constructed conjectures when they were explicitly asked to do so. The majority of the 
arguments that were constructed by the PSMTs attempted to provide an explanation for why the 
assertion held true which may show that the explanatory role of arguments indeed held an essential 
criterion for the PSMTs. 

Keywords: Teacher Education-Preservice  

Proof is viewed as a cornerstone of mathematics and an essential element for developing deep 
understanding (e.g., Ball & Bass, 2000; NCTM, 2000). Yet, research indicates that students of all 
levels tend to have limited understanding of proof and struggle with constructing proofs (e.g. Harel & 
Sowder, 1998). Many researchers demonstrated that the empirical reasoning is pervasive among 
school students including advanced or high-attaining secondary students (e.g. Coe & Ruthven, 1994; 
Healy & Hoyles, 2000), university students including mathematics majors (e.g., Goetting, 1995) as 
well as prospective and in-service teachers (e.g. Morris, 2002; Simon &Bume, 1996). 

Despite the importance of teachers’ understanding of proof, relatively little research has 
investigated aspects of prospective or practicing teachers’ understanding of proofs (Goetting, 1995; 
Morris, 2002; Stylianides, Stylianides, & Philippou, 2007). Furthermore, previous studies focus 
solely on teachers’ understanding of the distinction between deductive and empirical arguments by 
asking them to evaluate researcher generated arguments. Stylianides and Stylianides (2009) criticized 
that there has been limited research about how instructions can help pre-service teachers’ develop 
their understanding of proof. Thus, this study aims to contribute to literature on pre-service teachers’ 
understanding of proof by reporting on pre-service mathematics teachers’ (PSMTs)processes of 
constructing-evaluating mathematical conjectures-proofs during a course in which PSMTs 
specifically engaged in proving tasks.  

Functions of Proof in Classrooms 
Traditionally the function of proof has been seen almost exclusively as being to verify or justify 

the correctness of mathematical statements (e.g. Ball & Bass, 2000). The “verification” function of 
proof is often interpreted in subjective terms, establishing the truth of a statement with an 
individual’s belief in the truth of a statement and thus allocating proof a role in the subjective 
acquisition of such belief. However, as Bell (1976) argues, proof is not necessarily a prerequisite for 
conviction; proof is essentially a social activity of validation or establishing results, which follows 
reaching a conviction. Duval (2002) argues that a proof can change the logical value as well as 
epistemic value of a statement. That is, a proof may logically validate a statement, but it can also 
affect the belief of the cognizing subject as to the truth of the statement. These two functions of 
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proof—to convince individuals and to establish results in the field—are by no means the only 
functions of proof in mathematical activity.  

Researchers have contributed to such elaboration on the functions of proof both by reflecting on 
its many roles in the discipline of mathematics and by identifying its roles in mathematical 
understanding. These roles are identified by de Villiers by building on the work of others (Balacheff, 
1988; Bell, 1976; Hanna, 1990; Hersh, 1993) as follows: (a) verification (concerned with the truth of 
a statement), (b) explanation (providing insight into why it is true), (c) systematization (the 
organization of various results into a deductive system of axioms, major concepts and theorems), (d) 
discovery (invention of new results), (e) communication (the transmission of mathematical 
knowledge), and (f) intellectual challenge (de Villiers, 1990, p.18). 

Hersh (1993) argues that the role of proof in the classroom and the role of proof in mathematical 
discipline could be different, stating that the purpose of proof in mathematical discipline to be to 
convince, while in a classroom it should be to explain. Knuth (2002) has echoed this theme, arguing 
to teachers that proofs are valuable because they can help students understand mathematics. Hanna 
(1990) distinguishes between “proofs that prove” and “proofs that explain”.Thus, the development of 
proofs in the course where the study took place served two related functions: (a) as means for 
explaining why an assertion was true or false by showing how the statement of a theorem coheres 
and connects with the key properties of the concepts involved in the proof, which will be referred as 
Type P1proof and (b) as a means for justifying that an assertion was true thereby promoting 
conviction, which will be referred as Type P2 proof in the study. 

Methodology  
In this section, the context in which the research reported here took place, the research 

participants and the data collection and analysis processes will be described. 

Participants 
Participants of the study were 58 pre-service mathematics teachers (PSMTs) who are certified to 

teach mathematics in grade 5- 8.  The PSMTs enrolled in a mathematics course during the semester 
of spring of 2016. The course was worth three university credits, and so the class met 3 hours per 
week for a semester. The course was designed to cover a wide range of mathematical topics in three 
major mathematical domains (algebra, geometry and number theory). The PSMTs were offered 
various opportunities to engage with mathematical proofs including constructing-evaluating proofs, 
representing them in different ways (using everyday language, algebra, or pictures), and examining 
the correspondences among different representations. 

Tasks 
A sample of proof tasks in which PSMTs were engaged in during the semester will be presented 

here in order for readers to better conceptualize PSMTs’ conjecture/proof construction and 
evaluation processes (see Table 1). 

Data Collection Process 
The participants were engaged in a course where they were required to work in groups of 6. The 

participants were engaged in solving tasks that were adopted from existing literature (see Table 1). 
All instructions were videotaped during three hours of the instruction time for 14 weeks in the 
semester. The video camera was located at the corner of the classroom where the board was captured. 
These videos served as the main data source for the study. In addition to the class videos, the 
PSMTs’ written responses to some of the tasks and their class assignments were also collected. 
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Table 1: Sample of the Tasks 
Task B was adopted from (Weber, 2003). The task 
was as follows:  
 
For every odd integer n, n2 - 1 is divisible by 8. 
 

Task A was adopted from Wilburne (2014). The 
task was as follow:  
 
A fast food restaurant sells chicken nuggets in packs 
of 4 and 7. What is the largest number of nuggets 
you cannot buy? How do you know this is the 
largest number you cannot buy?  

Task D was adopted from Boaler and Humphreys 
(2005). The task was as follows:  

 

Task C was as follows: 
Justify that the area formula of a kite is !!!!! , where 

d1and d2 are the diagonals of the kite. 
 

 

Data Analysis 
The data analysis started with reviewing the videos of the instructions first. After the first review 

of the videos, the parts where the PSMTs were engaged in construction-and-evaluation of 
mathematical conjectures-and-proofs were selected and transcribed. Later, the selected segments and 
the transcript of these segments were viewed again and the PSMTs’ proof constructions were coded 
in one of the following categories: Type P1: valid general argument that explains why an assertion 
was true by standing of the underlying mathematical concepts, Type P2: valid general argument that 
proves that an assertion was true but did not provide any insight into why it might hold true, Type P3:  
general argument that fall short of being acceptable proofs , and Type P4: unsuccessful attempt for a 
valid general argument (invalid, unfinished, or  irrelevant responses (or potentially relevant response 
but the relevance was not made evident). Categories TypeP1 through TypeP4 represent four different 
arguments constructed by the PSMTs in decreasing levels of sophistication (from a mathematical 
stand point), with Type P4 representing the least sophisticated argument. The construction of 
conjectures was coded in one of the following categories: Type C1: conjecture that was constructed 
as a response to a requested wish (usually by the instructor) in a given context, Type C2: conjecture 
that was constructed spontaneously as a natural extension of a task, and TypeC3: incorrect 
conjectures. As opposed to categories for proofs, categories Type C1 through Type C3 for coding 
PSMTs’ conjectures were not listed in hierarchical levels of sophistication. 
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Results 

General Findings 
Table 2 summarizes the distribution of proof-conjecture constructions during the semester. As it 

was evident in the table, the majority of the proofs constructed during the class were Type P1 proof, 
valid general argument that explains why an assertion was true or false by showing how the 
statement of a theorem coheres and connects with the key properties of the concepts involved in the 
proof. Of the remaining 29 proving occurrences, 18 of them were Type P2 proofs, valid general 
arguments that established that an assertion was true thereby promoted conviction, but provided little 
or no explanation for why it held true. 

Type P4 proofs, unsuccessful attempt for a valid general argument (i.e. incorrect, invalid, 
unfinished, or irrelevant responses-or potentially relevant response but the relevance was not made 
evident in the argument), were proposed 8 times during the semester; however, it should be noted 
that the PSMTs were aware of the limitations of these arguments. Therefore, they were able to 
evaluate those arguments as not proofs or as not correct argument during the class discussions. Of 
these 8 unsuccessful attempts to prove the class tasks, 2 arguments were empirical arguments. The 
PSMTs who proposed these empirical arguments as well as the others in the class were able to state 
the fact that generalizing from specific cases was not a valid mode of argumentation. 

The number of the cases where conjectures were constructed during the class happened 
significantly less than the number of cases where proofs were proposed (13 vs. 57). Additionally, the 
majority of the cases where the conjectures were constructed occurred as a response to a request 
made usually by the instructor (Type C1 conjecture). Incorrect conjectures were proposed 3 times 
during the instructions and after these conjectures were proposed the other PSMTs in the class were 
able to refute these conjectures by providing a valid counterexample. 

Table 2: Distribution of Proof-Conjecture Constructions During the Class 

Conjectures Proofs  

Type C3 Type C2 Type C1 Type P4 Type P3 Type P2 Type P1 

3 (23%) 4 (30%) 6 (46%) 8 (14%) 3 (5%) 18 (31%) 

 

28 (49%) 

 

 

Classroom Episodes That Represent Different Types of Proof-Conjecture Constructions 
In this part two classroom episodes will be shared to exemplify some of the codes used to codify 

the PSMTs’ proof –and-conjecture conjectures.  
Episode 1: Chicken tender task. In this episode, the PSMTs were engaged in working on 

chicken tender task in their groups.  

Orhan: Our group has decided that the numbers that can be represented as 28k+27, where k is an 
integer, cannot be bought in the packets of 7 and/or 4. 

Instructor: Ok. Where did 28 and 27 come from? 
Orhan: 7 times 4 is 28, so 28 can be bought in packets of either 7 or 4 or its multiples. 
Instructor: OK, if k=1 then how many nuggets do you think you cannot buy, umm, 55? 
Orhan: Yes 
Instructor: Can we have 55 nuggets in the packets of 7 and/or 4? 
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Merve: Yes. We can have 5 packets of 7s and 5 packets of 4s. So, we can get 55 nuggetsin total. 
Instructor: Ok, so the numbers that are represented as 28k+27 can be bought in packets of 7 and 

4. Anybody else have an argument? Selman?    
Selman: (Writing numbers on the board). You can represent all numbers by adding 4. For 

instance, if you add 4 to 11, you will get 15; if you add 4 to 12 you will get 16; if you add 4 
to 14 you will get 18 and it will continue like this. These numbers cannot be bought in 
packets of 7 or 4 (highlighting the numbers underlined below). Umm, I needed to check 21 
because it is to add 4 to 17 and I know 17 cannot be represented as addends of 4 (or multiples 
of 4) and 7 (or multiples of 7). However, I have found that 21 is 3 times 7, so it is okay too. 
Now you will continue this pattern for all numbers 21+4=25, 
22+4=26,23+4=27,24+4=28...etc.  

 
Ayse: When you get modulo 7, the residue classes will be 1,2,3,5,or 6 (4 cannot be counted here 

because we can get the packets of four). When you get modulo 4, the residue classes will be 
1,2,and 3. When you add all residue classes up you will get the answer-17.  

In this episode, the conjecture proposed by Orhan was coded as Type C3: incorrect conjecture. 
The instructor posed a counterexample as a necessary condition for the realization of falsity of the 
conjecture. The PSMTs were able to explain how the example 55 contradicted the conjecture and 
refuted Orhan’s conjecture. Selman’s argument was coded as Type P1 since it was built on the 
properties of numbers. It was a correct argument to justify that 17 was the highest number of chicken 
tenders that could not be bought in packets of 4 and/or 7.  Ayse identified all residue classes of 
modulo 7 except 4 (since it could be a possible answer) and added them up to reach the answer of 17. 
However, her argument did not include a justification for the assertion that the residues would always 
be the highest number that could not be bought in the packets of 4 or 7. Indeed, when her argument 
was applied to different numbers such as packets of 6 and 4, it would not give the correct response. 
Therefore, her argument was coded as Type P4. 

Episode 2: Area perimeter task. In this episode, the PSMTs were engaged in working on 
geometry task-investigating the relationship between area and perimeter of rectangles. The 
instructor asked the PSMTs to construct conjectures about area and perimeter of rectangles. Cihat 
proposed the following conjecture: “With the same perimeter, the smaller the difference between 
the side lengths of a rectangle, the biggest the area”. The instructor asked the PSMTs to evaluate 
the conjecture and prove whether it was correct. 

Merve:(Drew three rectangles with the side lengths of 12 by 6, 15 by 3, and 9 by 9). It is true. 
These rectangles have the same perimeter, 36. But, the area of the square is bigger than the 
other two rectangles.  

Instructor: Do you think that Merve proved Cihat’s conjecture? 
PST: No, she just demonstrated for those rectangles. 
Instructor: What is missing in her argument? 
PSTs: It is not general 
Instructor: We mentioned that providing examples do not suffice as mathematical proofs. How 

many examples can I draw with a perimeter of 36? 
PSTs: 5? (Said as if they were asking if it was true). Infinitely many? 
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Cihat: Infinitely many, because in between whole numbers, there are infinitely many rational 
numbers 

Instructor: So we can draw infinitely many rectangles with the perimeter of 36, will you be able 
to try all of these rectangles out like Merve attempted to do here? 

PSTs: No! 
Yılmaz: (Volunteered to share his argument). Now we have the lengths of b,c (referring to the 

long and short sides of a rectangle in this order) and x (referring to a side length of a square). 
They should have the following relationships:  b>x>c. Thus, x2>b.c. Let’s assume that x=n 
and c=n-1 and b=n+1. Therefore, x2=n2>b.c=n2-1 

 
Instructor:Why does b have to be bigger than x and x has to be bigger than c? 
PSTs: If these two rectangles have the same perimeter, than this relationship should hold. 
Instructor: Ok, but why should x between b and c? 
Cihat: b and c should be different in lengths, because we consider the rectangles that are not 

squares, so b≠c. Then, we know that x=!!!!  since the perimeter of the two shapes should be 

equal. Thus x should be between b and c. We know that x= !!!! so, x2= !
!!!!!!"#

! . We know 

that b-c>0, so (b-c)2>0.b2-2bc+c2>0 ⇒ b2+c2>2bc.  If b2+c2>2bc, Then  !
!!!!!!"#

!  should be 
bigger than b.c (the area of the rectangle). 

Instructor: Ok, great.Zeynep, would you like to share your method with us? 
Zeynep: (Writing her argument on the board).The perimeters of these rectangles should be the 

same.A1= n2+nx and A2= n2+nx+x2/4. Thus, it is obvious that A2 should be bigger than A1 
since x≠0. 

 
Aysegul: (Writing her argument on the board).  
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Cihat’s conjecture was constructed as a response to the Instructor’s request. Therefore, it was 

coded as Type C1. Merve provided three examples that demonstrated that Cihat’s conjecture was 
true. Since Merve used an invalid mode of argumentation-inductive argument-, her argument was 
coded as Type P4. Stylianides (2007) argues that the main difference between empirical arguments 
and proofs lies in the modes of argumentation: invalid versus valid modes of argumentation. 
Empirical arguments provide inconclusive evidence by verifying the statement’s truth only for a 
proper subset of all covered by the generalization, whereas proofs provide conclusive evidence truth 
by treating appropriately all cases covered by the generalization. When asked to evaluate the 
argument, both Merve and the other PSMTs in the class were able to state this limitation of the 
argument. Stylianides & Stylianides (2009) argued that construction-evaluation tasks can better 
identify prospective teachers’ who seem to posses the empirical justification scheme. Unlike Merve, 
Yilmaz attempted to construct a deductive argument. However, his argument did not provide 
justification for some of the assertions he used in his argument (i.e. b>x>c). Additionally, Yilmaz’s 
argument was constructed based on a condition- the side lengths of the rectangle and the square 
should be consecutive. Yilmaz’s argument was coded as Type P3. Cihatwas able to provide the 
justifications for each step of his argument. Thus, his argument as well as Zeynep’s and Aysegul’s 
arguments was coded as Type P1.  

Conclusion and Discussion 
Given that teachers’ ability to teach mathematics depends on the quality of their subjectmatter 

knowledge, a necessary condition for the realization of the importance of mathematical proofs as 
stated in the current curriculum reforms (NGA/CCSSO, 2010; NCTM,2000) is that teachers of all 
levels have good understanding of proofs (Stylianides & Ball, 2008).  This study reported pre-service 
mathematics teachers’ engagement with proof-and-conjecture tasks.The results of the study 
demonstrated that the number of instances where the PSMTs constructed conjectures, which 
isreferred as one of the essential parts of the process of making sense of and establishing 
mathematical knowledge (Stylianides, 2008), were limited and usually occurred when asked 
explicitly. Constructing arguments to prove and/or disprove assertions, on the other hand, occurred 
more often. Furthermore, the majority of the arguments constructed highlighted the explanatory 
aspect, which is consistent with the results of many studies that claimed that in mathematics 
classrooms, it would be more useful to use proof as a tool to explain than to convince (Hanna, 1990; 
Knuth, 2002). 
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